Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering.
نویسندگان
چکیده
The release of nanomaterials from products and applications that are used by industry and consumers has only been studied to a very limited extent. The amount and the characteristics of the released particles determine the potential environmental exposure. In this work we investigated the release of Ti from paints containing pigment-TiO2 and nano-TiO2. Panels covered with paint with and without nano-TiO2 were exposed to simulated weathering by sunlight and rain in climate chambers. The same paints were also studied in small-scale leaching tests to elucidate the influence of various parameters on the release such as composition of water, type of support and UV-light. Under all conditions we only observed a very low release close to background values, less than 1.5 μg l(-1) in the climate chamber over 113 irrigations per drying cycle and between 0.5 and 14 μg l(-1) in the leaching tests, with the highest concentrations observed after prolonged UV-exposure. The actual release of Ti over the 113 weathering cycles was only 0.007% of the total Ti, indicating that TiO2 was strongly bound in the paint. Extraction of UV-exposed and then milled paint resulted in about 100-times larger release of Ti from the nano-TiO2 containing paint whereas the paint with only pigment-TiO2 did not show this increase. This indicated that the release of Ti from the paints is an effect of the addition of nano-TiO2, either by photocatalytic degradation of the organic paint matrix (observed by electron microscopic imaging of the paint surface) or by direct release of nano-TiO2. Our work suggests that paints containing nano-TiO2 may release only very limited amounts of materials into the environment, at least over the time-scales investigated in this work.
منابع مشابه
Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening
Production of titanium-dioxide nanomaterials (nano-TiO2) is increasing, leading to potential risks associated with unintended release of these materials into aquatic ecosystems. We investigated the acute effects of nano-TiO2 on metabolic activity and viability of algae and cyanobacteria using high-throughput screening. The responses of three diatoms (Surirella angusta, Cocconeis placentula, Ach...
متن کاملAggregation of TiO2 Nanoparticles in Aqueous Media: Effects of pH, Ferric Ion and Humic Acid
Introduction As one of the most common nanomaterials, TiO2 nanoparticles have found their industrial and household applications in cosmetics, sunscreens, pharmacy, socks, paints and coatings, catalyst, even food and many other fields, which are expected to continue to grow in the next decade [1]. However, the release of TiO2 nanoparticles into the aquatic environment is inevitable during the pr...
متن کاملTiO2 Pigment Suspension Behaviour upon Adsorption of Polymeric Dispersants
The influence of polymeric dispersants containing different functional groups on TiO2 pigment particle suspension was investigated at pH 6.0 and 9.5, using rheology and particle size data. The dispersants chosen were polyacrylic acid and modified polyacrylamides including homo and copolymers modified with carboxylate and/or hydroxyl groups. The pigment suspension was strongly affected by both p...
متن کاملCategorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity
A potentially useful means of predicting the pulmonary risk posed by new forms of nano-structured titanium dioxide (nano-TiO2) is to use the associations between the physicochemical properties and pulmonary toxicity of characterized forms of TiO2. In the present study, we conducted intratracheal administration studies in rats to clarify the associations between the physicochemical characteristi...
متن کامل[Titanium dioxide nanoparticles: occupational exposure limits].
Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science. Processes & impacts
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2013